[PDF] Nanoparticles: Building Blocks For Nanotechnology

Nanoparticles: Vincent Rotello 2012-12-06 The integration of top-down lithographic techniques with synthetic organic and inorganic technologies is a key challenge for the development of effective nanoscale devices. In terms of assembly, nanoparticles provide an excellent tool for bridging the gap between the resolution of electron beam lithography (~60 nm) and the molecular level.

Nanoparticles possess an array of unique properties associated with their core materials, including distinctive magnetic, photonic and electronic behavior. This behavior can be controlled and applied through monolayer functionalization and assembly strategies, making nanoparticles both scaffolds and building blocks for nanotechnology. The diverse structures and properties of nanoparticles makes them useful tools for both fundamental studies and pragmatic applications in a range of disciplines. This volume is intended to provide an integrated overview of the synthesis and assembly of nanoparticles, and their applications in chemistry, biology, and materials science. The first three chapters focus on the creation and intrinsic properties of nanoparticles, covering some of the myriad core materials and shapes that have been created. The remaining chapters of the book discuss the assembly of nanoparticles, and applications of both discrete particles and particle assemblies in a wide range of fields, including device and sensor fabrication, catalysis, biology, and nanoscale electronic and magnetic systems.

Spark Ablation: Andreas Schmidt-Ott 2020-01-23 In many fields, the special properties of nanoparticles, which come into play especially for sizes, are of utmost importance. The authors of this book all have many years of experience in spark ablation and its applications. The introductory chapters give an overview of the technological fields that can exploit these size effects, and explain the process of spark ablation in the gas phase, as well as principles of immobilizing the particles to create novel products and materials. Fundamentals of the spark ablation process are then treated, as well as the characteristics of the particles formed. The rest of the book deals with a selection of application fields that profit from the spark ablation source from the perspective of research.

Polymer Nanofibers: Dario Pisignano 2013-06-03 Research into polymer nanofibers has increased significantly over the last decade, prompting the need for a comprehensive monograph examining the subject as knowledge of their properties and potential applications has increased. Postgraduate students and researchers new to the field will benefit from the “from materials to applications” approach to the book, which examines the physio-chemical properties in detail, demonstrating how they can be exploited for a diverse range of applications, including the production of light and wound dressings. Techniques for the fabrication, notably electrospinning, are discussed at length. This book provides a unique and accessible source of information, summarising the last decade of the field and presenting an entry point for those entering the field and an inspiration to established workers. The author is currently the national coordinator for several research projects examining the applications of polymer nanofibers, alongside active international collaborations.

Nanoparticles: Ramanathan Nagarajan 2008 Recent advances in the synthesis, stabilization, passivation and functionalization of a wide range of metal, metal oxide, semiconductor and other inorganic, polymer, organic, carbon and biological nanoparticles are reported in this book. Diverse shapes of nanoparticles are discussed here including spheres, cubes, nanorods, nanowires, nanotubes, nanocapsules, and nanoprisms. In the section on metals, one can find description of colloidal and wet chemical approaches to synthesize nanoparticles, methods to control number of functional groups and to attain aqueous dispersibility, impact of stabilizers on SERS activity, and ways to tune plasmon resonance via nanoparticle shapes. A time dependent density functional theory makes it possible to evaluate adsorption properties of passivating ligands as well. The section on metal oxides describes surfactant aided formation and stabilization of iron oxide nanoparticles, the synthesis of titania nanotubes, and a hydrothermal condensation method to prepare nanowires of vanadium pentoxide. The section on semiconductor and inorganic nanoparticles includes details of the preparation of quantum dot surfactants as Langmuir Blodgett films, the synthesis of fluorinated organics silica composite nanoparticles, the kinetics of silver sulfide nanoparticle formation, the preparation of ultra bright silica nanoparticles and of nanoporous membranes from silica nanoparticle crystalline films, and a comprehensive view of microwave synthesis methods. The section on polymer nanoparticles describes a ligand exchange strategy to produce polymer functionalized ferromagnetic nanoparticles, ROMP polymerization to produce polymer overlayers on nanoparticles, colloidal approaches to polycrystalline coated nanoparticles, and self assembly approach to stabilize polymer nanoparticles of controlled size. The final section includes a novel method to crystallize organic nanorods as branches on semiconductor nanoparticles, the use of tobacco mosaic virus as a template to prepare composite nanofibers, the synthesis of antibody functionalized gold nanorods of various aspect ratios for SPR based biosensing, and methods to stabilize aqueous dispersions of single wall carbon nanotubes using gamma cyclodextrins. In a fast growing field, this book offers both the beginning
and advanced researchers, important details on creating nanomaterials and fruitful directions to follow.

RNA Nanotechnology Bin Wang 2014-04-02 In the past few decades there has been incredible growth in "bionano"-related research, which has been accompanied by numerous publications in this field. Although various compilations address topics related to deoxyribonucleic acid (DNA) and protein, there are few books that focus on determining the structure of ribonucleic acid (RNA) and using RNA as building blocks to construct nanoarchitectures for biomedical and healthcare applications. RNA Nanotechnology is a comprehensive volume that details both the traditional approaches and the latest developments in the field of RNA-related technology. This book targets a wide audience: a broad introduction provides a solid academic background for students, researchers, and scientists who are unfamiliar with the subject, while the in-depth descriptions and discussions are useful for advanced professionals. The book opens with reviews on the basic aspects of RNA biology, computational approaches for predicting RNA structures, and traditional and emerging experimental approaches for probing RNA structures. This section is followed by explorations of the latest research and discoveries in RNA nanotechnology, including the design and construction of RNA-based nanostructures. The final segment of the book includes descriptions and discussions of the potential biological and therapeutic applications of small RNA molecules, such as small/short interfering RNAs (siRNAs), microRNA (miRNAs), RNA aptamers, and ribozymes.

Nanotechnology and Nanomaterials in the Treatment of Life-threatening Diseases Narendra Kumar 2013-12-05 Nanotechnology and Nanomaterials in the Treatment of Life-threatening Diseases takes a scientific approach to nanotechnology and nanomaterials applications in medicine, while also explaining the core biological principles for an audience of biomedical engineers, materials scientists, pharmacologists, and medical diagnostic technicians. The book is structured by major disease groups, offering a practical, application-based focus for scientists, engineers, and clinicians alike. The spectrum of medical applications is explored, from diagnostics and imaging to drug delivery, monitoring, therapies, and disease prevention. It also focuses specifically on the synthesis of nanomaterials and their potential health risks (particularly toxicity). Nanomedicine — the application of nanomaterials and devices for addressing medical problems — has demonstrated great potential for enabling improved diagnosis, treatment, and monitoring of many serious illnesses, including cancer, cardiovascular and neurological disorders, HIV/AIDS, and diabetes, as well as many types of inflammatory and infectious diseases. Gain an understanding of how nanotechnologies and nanomaterials can be deployed in the fight against the major life-threatening diseases: cancer, neurological disorders (including Alzheimer's and Parkinson's), cardiovascular diseases, and HIV/AIDS. Discover the latest developments in nanomedicine, from therapies and drug delivery to diagnostics and disease prevention. The authors cover the health risks of nanomaterials as well as their benefits, considering toxicity and potential carcinogens.

Nanomaterials Maria Benelmekki 2019-05-02 Nanomaterials and nanostructures are the original product of nanotechnology, and the key building blocks for enabling technologies. In this context, this book presents a concise overview of the synthesis and characterization methods of nanomaterials and nanostructures, while integrating facets of physics, chemistry, and engineering. The book summarizes the fundamentals and technical approaches in synthesis, and processing of nanostructures and nanomaterials, so as the reader can have a systematic and quick picture of the field. This book focuses on functional aspects of nanomaterials that have a high relevance to immediate applications, such as catalysis, energy harvesting, biosensing, and surface functionalization. There are chapters addressing nanostructured materials and composites and covering basic properties and requirements of this new class of engineered materials.

NanoComposite Structures and Dispersions Ignac Capek 2019-07-20 NanoComposite Structures and Dispersions deals with the preparation of gelled, branched and crosslinked nanostructured polymers in the solution free radical polymerization and controlled/living radical polymerization and polymer and composite nanoparticles and nanostructures in disperse systems, the kinetics of direct and inverse disperse polymerizations (microemulsion, miniemulsion, emulsion, dispersion and suspension polymerization), the bottom-up approach building of functionalized nanoparticles, modelling of radical microemulsion polymerization, the characterization of traditional and non-traditional polymer dispersions, the collective properties of nanomaterials and their (bio)applications. This book is designed to bridge that gap and offers several unique features. First, it is written as an introduction to and survey of nanomaterials with a careful balance between basics and advanced topics. Thus, it is suitable for both beginners and experts, including graduate and upper-level undergraduate students. Second, it strives to balance the colloidal aspects of nanomaterials with physical principles. Third, the book highlights nanomaterial based architectures including composite or hybrid conjugates rather than only isolated nanoparticles. A number of ligands have been utilized to biodecorate the polymer and composite nanocarriers. Finally, the book provides an in-depth discussion of important examples of reaction mechanisms of bottom-up building of functionalized nanoparticles, or potential applications of nanoarchitectures, ranging from physical to chemical and biological systems. Free radical (controlled) polymerization, branching, crosslinking and gelling Kinetics and mechanism of polymer nanoparticles formation Modelling of radical polymerization in disperse systems Polymer, composite and metal nanoparticles, nanostructures and nanomaterials Smart nanostructures, biodecorated particles, nanocarriers and therapeutics

Anisotropic Nanomaterials Quan Li 2015-06-09 In this book anisotropic one-dimensional and two-dimensional nanoscale building blocks and their assembly into fascinating and qualitatively new functional structures embracing both hard and soft components are explained. Contributions from leading experts regarding important aspects like synthesis, assembly, properties and applications of the above materials are compiled into a reference book. The anisotropy, i.e. the direction-dependent physical properties, of materials is fascinating and elegant and has sparked the quest for
Molecular Building Blocks for Nanotechnology - G. Ali Mansoori 2007-09-14 This book takes a "bottom-up" approach, beginning with atoms and molecules - molecular building blocks - and assembling them to build nanostructured materials. Coverage includes Carbon Nanotubes, Nanowires, and Diamondoids. The applications presented here will enable practitioners to design and build nanometer-scale systems. These concepts have far-reaching implications: from mechanical to chemical processes, from electronic components to ultra-fine sensors, from medicine to energy, and from pharmaceuticals to agriculture and food.

Designing Hybrid Nanoparticles - Maria Benelmekki 2015-04-01 In the last few years, several “bottom-up” and “top-down” synthesis routes have been developed to produce tailored hybrid nanoparticles (HNPs). This book provides a new insight into one of the most promising “bottom-up” techniques, based on a practical magnetron-sputtering inert-gas-condensation method. A modified magnetron-sputtering-based inert-gas-condensation (MS-IGC) system is presented, and its performances under different conditions are evaluated. Designed for graduate students, researchers in physics, materials science, biophysics and related fields, and process engineers, this new resource fills a critical need to understand the fundamentals behind the design and tailoring of the nanoparticles produced by the MS-IGC method. It shows that the morphology, the size and the properties of the nanoparticles can be modulated by tuning the deposition parameters such as the energy, the cooling rate, and the collision and coalescence processes experienced by the nanoparticles during their formation. The mechanisms of formation of different HNPs are suggested, combining the physico-chemical properties of the materials with the experimental conditions. This book illustrates the potential of MS-IGC method to synthesize multifunctional nanoparticles and nanocomposites with accurate control on their morphology and structure. However, for a better understanding of HNPs formation, further improvements in characterization methods of aggregation zone conditions are needed. In addition, the optimization of the yield and harvesting process of HNPs is essential to make this method sufficiently attractive for large-scale production.

Bio-Nanoparticles - Om V. Singh 2015-06-22 Nanoparticles are considered to be the building blocks for nanotechnology and are referred to as the particles having more than one dimension of the order of 100 nm or less. The nanostructured materials are being offered as better built, long lasting, cleaner, safer, and smarter products for use in communications, medicine, transportation, agriculture and other industries. Topics in molecular recognition, biomolecule-nanocrystal conjugates as fluorescence label for biological cells, and DNA-mediated groupings of nanocrystals are widespread, intriguing researchers from both biological and engineering fields. The diversity of nanotechnology covers fields from biology to material science, physics to chemistry, and other fields with variety of specialties. Controlled size, shape, composition, crystallinity, and structure-dependent properties of nanoparticles govern the unique properties of nanotechnology. The controlled biosynthesis of nanoparticles is of high scientific and technological interest as the microorganisms grab target ions from their environment and then turn the metal ions into the element metal through enzymatic mechanism generated through their cellular (Intra/Extra) activities. The project aims to introduce the basics and advancements made so far in the field of biosynthesis of nanoparticles for graduate students and researchers around the world. The main aims are to (a) introduce the reader to the variety of microorganisms and their ability to synthesize the nanoparticles, (b) provide an overview of the methodologies applied to biosynthesize the variety of nanoparticles of medical and commercial uses, (c) provide a literature review on diversity of microorganisms able to synthesize nanoparticles of different types, (d) discuss the regulatory mechanisms in microorganism able to synthesize variety of nanoparticles, (e) discuss experimental design problems associated with the controlled biosynthesis of nanoparticles, (f) discuss the stability and toxicity of nanoparticles in varying environment towards their therapeutic implications. The regulations, challenges and implications of biosynthesized nanoparticles for commercial significance will also represent among the main sections of the book. These aims will be organized by invited research/review articles from renowned researchers exploring biosynthesis of variety of nanoparticles, and differ in length and number of chapters, with the literature review section containing the bulk of the text.

DNA in Supramolecular Chemistry and Nanotechnology - Eugen Stulz 2015-09-28 This book covers the emerging topic of DNA nanotechnology and DNA supramolecular chemistry in its broader sense. By taking DNA out of its biological role, this biomolecule has become a very versatile building block in materials chemistry, supramolecular chemistry and bio-nanotechnology. Many novel structures have been realized in the past decade, which are now being used to create molecular machines, drug delivery systems, diagnosis platforms or potential electronic devices. The book combines many aspects of DNA nanotechnology, including formation of functional structures based on covalent and non-covalent systems, DNA origami, DNA based switches, DNA machines, and

From the image, it appears to be a section of a document discussing the importance and applications of nanoparticles in various fields. The text highlights the versatility of nanoparticles, their role in nanotechnology, and their implications in areas such as medicine, energy, and materials science. It also references specific books and researchers that have contributed to the field, providing a comprehensive overview of the topic.
alternative structures and templates. This broad coverage is very appealing since it combines both the synthesis of modified DNA as well as designer concepts to successfully plan and make DNA nanostructures. Contributing authors have provided first a general introduction for the non-specialist reader, followed by a more in-depth analysis and presentation of their topic. In this way the book is attractive and useful for both the non-specialist who would like to have an overview of the topic, as well as the specialist reader who requires more information and inspiration to foster their own research.

Protein-based Engineered Nanostructures - Alziber L. Cortajarena 2016-09-27 This book is devoted to the engineering of protein-based nanostructures and nanomaterials. One key challenge in nanobiotechnology is to be able to exploit the natural repertoire of protein structures and functions to build materials with defined properties at the nanoscale using “bottom-up” strategies. This book addresses in an integrated manner all the critical aspects that need to be understood and considered to design the next generation of nano-bio assemblies. The book covers first the fundamentals of the design and features of the protein building blocks and their self-assembly illustrating some of the most relevant examples of nanostructural design. Finally, the book contains a section dedicated to demonstrated applications of these novel bioinspired nanostructures in different fields from hybrid nanomaterials to regenerative medicine. This book provides a comprehensive updated review of this rapidly evolving field.

Nanoscale Materials - Luis M. Liz-Marzán 2007-05-08 Organized nanoassemblies of inorganic nanoparticles and organic molecules are building blocks of nanodevices, whether they are designed to perform molecular level computing, sense the environment or improve the catalytic properties of a material. The key to creation of these hybrid nanostructures lies in understanding the chemistry at a fundamental level. This book serves as a reference book for researchers by providing fundamental understanding of many nanoscopic materials.

Design and Development of New Nanocarriers - Alexandru Mihai Grumezescu 2017-12-12 Design and Development of New Nanocarriers focuses on the design and development of new nanocarriers used in pharmaceutical applications that have emerged in recent years. In particular, the pharmaceutical uses of microfluidic techniques, supramolecular design of nanocapsules, smart hydrogels, polymeric micelles, exosomes and metal nanoparticles are discussed in detail. Written by a diverse group of international researchers, this book is a valuable reference resource for those working in both biosciences and the pharmaceutical industry. Shows how nanomanufacturing techniques can help to create more effective, cheaper pharmaceutical products. Explores how nanofabrication techniques developed in the lab have been translated to commercial applications in recent years. Explains safety and regulatory aspects of the use of nanomanufacturing processes in the pharmaceutical industry.

Protein Nanotechnology - Juliet A. Gerrard 2020 This third edition volume expands on the previous editions with updated approaches and techniques used to study protein nanotechnology and the future of nanomaterial compositions. This book is organized into Three Parts: Part One looks at recombinant protein expression in insect cells, and methods to produce molecular motors, molecular superglues, and protein templates; Part Two explores functionalization strategies and ways to incorporate functional protein components into nanodevices; Part Three discusses various instrumental techniques used to study protein nanostructures. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and thorough, Protein Nanotechnology: Protocols, Instrumentation, and Applications, Third Edition is a valuable resource for any researchers looking to expand their knowledge in this evolving field.

Linear DNA-linked Nanoparticle Building Blocks (nBLOCKs) for Modular Self-assembly of Nanostructures - Jakob Thomas Hockman 2017 Controlling the shapes and sizes of nanomaterials often enables controlling their properties for certain applications. The most promising methods for controlling the shapes and sizes of nanostructures use base-pairing between complementary DNA strands to self-assemble nanostructures from DNA and nanoparticles. DNA Brick-based self-assembly is a particularly useful method for creating DNA nanostructures. It offers a large amount of control over the final shapes and sizes because it uses building blocks that are anisotropic and have predictable geometry. However, this control has not been extended to the self-assembly of nanostructures from nanoparticles. Applying DNA Brick-based self-assembly to the self-assembly of nanostructures from nanoparticles would require DNA-linked nanoparticles that are anisotropic and have predictable geometry. To this end, Solidworks models were used to study the interactions between DNA Bricks so that detailed information could be gained about their mode of self-assembly. This information was used to generate Solidworks models of DNA-linked nanoparticle building blocks (nBLOCKs) that can be used for DNA Brick-based self-assembly. These nBLOCKs could be created by attaching a single 43 base pair (bp) long DNA strand to gold nanoparticles using the anisotropic monofunctionalization technique. However, accomplishing this feat would require improving the efficiency of the anisotropic monofunctionalization method first. Attempts to improve all three steps of the anisotropic monofunctionalization technique yielded mixed results. The efficiency of the first step, binding DNA to a solid support, was improved by implementing the photocleavable (PC) biotin – streptavidin interaction. UV-Vis absorbance spectroscopy revealed that the PC biotinylated DNA strands became bound to streptavidin-coated magnetic beads with nearly 100% efficiency. However, the second and third steps, binding gold nanoparticles (AuNPs) to DNA and cleaving DNA-linked AuNPs from the beads, still suffer from low yields. The efficiency of the second step was incrementally improved from 3% to 25% by tuning the reaction conditions. The third step was carried out at a
maximum of 10% efficiency. The method was successfully used to generate nBLOCKs but the overall yield was less than 5%. Explanations of and possible solutions to the low-yield are suggested for future experiments.

Viral Nanoparticles - Nicole F. Steinmetz 2019-07-28 This book overviews the applications of viral nanoparticles (VNPs) in areas ranging from materials science to biomedicine. It summarizes the many different VNP building blocks and describes chemistries that allow one to attach, entrap, or display functionalities on VNPs. The book outlines the strategies for the construction of 1-, 2-, and 3-D arrays, highlights the achievements in utilizing VNPs as tools for novel biosensors and nanoelectronic devices, and describes efforts in designing VNPs for biomedical applications, including their use as gene delivery vectors, novel vaccines, imaging modalities, and applications in targeted therapeutics.

Green Nanotechnology - Marcelo Larramendy 2016-06-01 This book, Green Nanotechnology - Overview and Further Prospects, is intended to provide an overview and practical examples of the use of nanomaterials in the new scientific challenges of the green nanotechnology world. We aimed to compile information from a diversity of sources into a single volume to give some real examples, extending the concept that green nanotechnology is far from being a scientific conundrum, and instead a real answer to some of the actual problems the whole planet is dealing with.

Nanotechnology and Functional Materials for Engineers - Yaser Dahman 2017-01-13 Nanotechnology and Functional Materials for Engineers focuses on key essentials and examples across the spectrum of nanomaterials as applied by engineers, including nanosensors, smart nanomaterials, nanopolymers, and nanotubes. Chapters cover their synthesis and characteristics, production methods, and applications, with specific sections exploring nanoelectronics and electro-optic nanotechnology, nanostructures, and nanodevices. This book is a valuable resource for interdisciplinary researchers who want to learn more about how nanomaterials are used in different types of engineering, including electrical, chemical, and biomedical. Offers in-depth information on a variety of nanomaterials and how they are used for different engineering applications. Provides an overview of current research and suggests how this will impact future applications. Explores how the unique properties of different nanomaterials make them particularly suitable for specific applications.

Nanotechnology and Plant Sciences - Manzer H. Siddiqui 2015-01-27 This book presents a holistic view of the complex and dynamic responses of plants to nanoparticles, the signal transduction mechanisms involved, and the regulation of gene expression. Further, it addresses the phytosynthesis of nanoparticles, the role of nanoparticles in the antioxidant systems of plants and agriculture, the beneficial and harmful effects of nanoparticles on plants, and the application of nanoparticles and nanotubes to mass spectrometry, aiming ultimately at an analysis of the metabolomics of plants. The growing numbers of inventions in the field of nanotechnology are producing novel applications in the fields of biotechnology and agriculture. Nanoparticles have received much attention because of the unique physico-chemical properties of these compounds. In the life sciences, nanoparticles are used as “smart” delivery systems, prompting the Nobel Prize winner P. Ehrlich to refer to these compounds as “magic bullets.” Nanoparticles also play an important role in agriculture as compound fertilizers and nano-pesticides, acting as chemical delivery agents that target molecules to specific cellular organelles in plants. The influence of nanoparticles on plant growth and development, however, remains to be investigated. Lastly, this book reveals the research gaps that must be bridged in the years to come in order to achieve larger goals concerning the applications of nanotechnology in the plants sciences. In the 21st century, nanotechnology has become a rapidly emerging branch of science. In the world of physical sciences, nanotechnological tools have been exploited for a broad range of applications. In recent years, nanoparticles have also proven useful in several branches of the life sciences. In particular, nanotechnology has been employed in drug delivery and related applications in medicine.

Scanning Microscopy for Nanotechnology - Weilie Zhou 2007-03-09 This book presents scanning electron microscopy (SEM) fundamentals and applications for nanotechnology. It includes integrated fabrication techniques using the SEM, such as e-beam and FIB, and it covers in-situ nanomanipulation of materials. The book is written by international experts from the top nano-research groups that specialize in nanomaterials characterization. The book will appeal to nanomaterials researchers, and to SEM development specialists.

The Production of Novel Electronic Materials and Devices from Metallic Nanoparticle Building Blocks - Jeffery David Bielefeld 1996
consumer confidence will be equally important to the success of this new emerging technology. The Institute of Medicine held a one-day workshop, summarized in this volume, to further explore the use of nanotechnology in food. Specifically, the workshop was organized around three primary topic areas: (1) the application of nanotechnology to food products; (2) the safety and efficacy of nanomaterials in food products; and (3) educating and informing consumers about the applications of nanotechnology to food products.

The Nanotech Pioneers - Steven A. Edwards 2008-01-08 Hype, hope, or horror? A vivid look at nanotechnology, written by an insider and experienced science writer. The variety of new products and technologies that will spin out of nanoscience is limited only by the imagination of the scientists, engineers and entrepreneurs drawn to this new field. Steve Edwards concentrates on the reader's self-interest: no military gadgets, wild fantasies of horror nanobot predators and other sci-fi stuff, but presents a realistic view of how this new field of technology will affect people in the near future. He is in close contact with many pioneers in nanotechnology, and includes their backgrounds to allow readers, especially college students considering a career in the field, to better imagine themselves in such positions. However, technology does not develop in a vacuum, and this book also looks at the social, political and economic changes attendant upon the development of nanotechnology. For the science-interested general public as well as chemists, students, lecturers, chemical organizations, materials scientists, journalists, politicians, industry, physicists, and biologists.

Bio-Nanoparticles - Om V. Singh 2015-03-31 Nanoparticles are the building blocks for nanotechnology; they are better built, long lasting, cleaner, safer, and smarter products for use across industries, including communications, medicine, transportation, agriculture and other industries. Controlled size, shape, composition, crystallinity, and structure-dependent properties govern the unique properties of nanotechnology. Bio-Nanoparticles: Biosynthesis and Sustainable Biotechnological Implications explores both the basics of and advancements in nanoparticle biosynthesis. The text introduces the reader to a variety of microorganisms able to synthesize nanoparticles, provides an overview of the methodologies applied to biosynthesize nanoparticles for medical and commercial use, and gives an overview of regulations governing their use. Authored by leaders in the field, Bio-Nanoparticles: Biosynthesis and Sustainable Biotechnological Implications bridges the gap between biology and technology, and is an invaluable resource for students and researchers alike.

Nanotechnology Applied To Pharmaceutical Technology - Mahendra Rai 2017-11-21 Focusing on the application of nanotechnology in pharmaceutical technology the editors seek to integrate the two in order to obtain innovative products and solutions in pharmacology. Interdisciplinary in content it is of interest to those who are involved in the development of nanoproducts including nanotechnologists, microbiologists, biotechnologists pharmaceuticians and clinicians. Recent studies are presented that include the biosynthesis of nanoparticles focusing on antimicrobials; nanomaterial-based formulations that treat cancer, infections, skin disorders and wounds; nanomaterials in eye diseases and toxicity and safety issues. It demonstrates the crucial role this plays in tackling multi-drug resistant threats.

Design of Novel Classes of Building Blocks for Nanotechnology: Core-Modified Metalloporphyrins and Their Derivatives - Aleksey E. Kuznetsov 2017 Metalloporphyrins and related macrocycles have been of great interest due to their role in biology and their numerous technological applications. Engineering of the porphyrins by replacing pyrrole nitrogens with other elements is a highly promising approach for tuning properties of porphyrins. To date, numerous efforts have been made to the modification of the porphyrin core with main-group elements, such as chalcogens (O, S, Se) and phosphorus. Thus, the modification of the porphyrin core by incorporation of heteroatoms instead of nitrogens is a very promising strategy for obtaining novel compounds with unusual optical, electrochemical and coordinating properties as well as reactivity. These novel compounds can be used as building blocks in various nanotechnological applications. Within the framework of this research, the following questions can be formulated: (i) what structures will core-modified porphyrins adopt? (ii) How will electronic properties of core-modified porphyrins differ from those of common tetrapyrroles? (iii) Will the core-modified porphyrins be able to form stacks and other arrays like regular porphyrins? (iv) Can core-modified porphyrins form complexes with fullerenes? (v) Can core-modified porphyrins activate small molecules, e.g. O2 or N2? (vi) Will the core-modified porphyrins be able to form complexes with nanoparticles?

Green Processes for Nanotechnology - Vladimir A. Basiuk 2015-03-25 This book provides the state-of-the-art survey of green techniques in preparation of different classes of nanomaterials, with an emphasis on the use of renewable sources. Key topics covered include fabrication of nanomaterials using green techniques as well as their properties and applications, the use of renewable sources to obtain nanomaterials of different classes, from simple metal and metal oxide nanoparticles to complex bioinspired nanomaterials, economic contributions of nanotechnology to green and sustainable growth, and more. This is an ideal book for students, lecturers, researchers and engineers dealing with versatile (mainly chemical, biological, and medical) aspects of nanotechnology, including fabrication of nanomaterials using green techniques and their properties and applications.

Micro- and Nanotechnology in Vaccine Development - Mariusz Skwarczynski 2016-09-20 This book provides a comprehensive overview of how use of micro- and nanotechnology (MNT) has allowed major new advance in vaccine development research, and the challenges that immunologists face in making further progress. MNT allows the creation of particles that exploit the inherent ability of the
human immune system to recognize small particles such as viruses and toxins. In combination with minimal protective epitope design, this permits the creation of immunogenic particles that stimulate a response against the targeted pathogen. The finely tuned response of the human immune system to small particles makes it unsurprising that many of the lead adjuvants and vaccine delivery systems currently under investigation are based on nanoparticles. Provides a comprehensive and unparalleled overview of the role of micro- and nanotechnology in vaccine development. Allows researchers to quickly familiarize themselves with the broad spectrum of vaccines and how micro- and nanotechnologies are applied to their development. Includes a combination of overview chapters setting out general principles, and focused content dealing with specific vaccines, making it useful to readers from a variety of disciplines.

Advances in Nanotechnology and the Environmental Sciences - Alexander V. Vakhrushev 2019-09-25 Showcasing a selection of new research on nanotechnological applications for environmental protection along with new advanced technologies in nanochemistry, this volume presents an interdisciplinary approach that brings together materials science, chemistry, and nanotechnology. Part I of the volume looks at environmental topics that include an exploration of the challenges of the global water crisis and new technology in nanofiltration and water purification. It provides an informative overview of green nanotechnology, green nanomaterials, and green chemistry. Some of the advanced technologies discussed in Part II include the application of quantum dots, a nanochemical approach to using ICT technology, and new research on polymer nanocomposites as a smart material along with its synthesis, preparation, and properties. Other important topics are included as well.

Nanotechnology Tools for the Study of RNA - 2016-02-23 This volume of Progress in Molecular Biology and Translational Science introduces emerging strategies of studying RNA structure and function using nanotechnological tools. The volume aims to provide the readers with a novel view and give them opportunities to think about how to incorporate the new technologies into their own research. This book informs and updates on strategies to take advantages of nanotechnological tools to answer to fundamental questions in RNA science. Collection of reviews written by the leading scientists from the field. The book covers a range of topics, from single molecule analyses using nanomaterials to gene regulation using RNA nanostructures.

Nanofabrication Towards Biomedical Applications - Challa S. S. R. Kumar 2006-03-06 This book focuses on the materials, synthetic methods, tools and techniques being developed in the nanoregime towards the life sciences – in particular biology, biotechnology and medicine. Readers from materials science, engineering, chemistry, biology and medical backgrounds will find detailed accounts of the design and synthesis of nanomaterials and the tools and techniques involved in their production for applications in biology, biotechnology and medicine.

Soft Nanoparticles for Biomedical Applications - José Callejas-Fernández 2014-06-18 Nanoparticles are attractive for many biomedical applications such as imaging, therapeutics and diagnostics. This new book looks at different soft nanoparticles and their current and potential uses in medicine and health including magnetoliposomes, micro/nanogels, polymeric micelles, DNA particles, dendrimers and bicelles. Each chapter provides a description of the synthesis of the particles and focus on the techniques used to characterize the size, shape, surface charge, internal structure, and surface microstructure of the nanoparticles together with modeling and simulation methods. By giving a strong physical-chemical approach to the topic, readers will gain a good background into the subject and an overview of recent developments. The multidisciplinary point of view makes the book suitable for postgraduate students and researchers in physics, chemistry, and biology interested in soft matter and its uses.

Nanotechnology in Construction - Zdenek Bittnar 2009-04-21 The 3rd International Symposium on Nanotechnology in Construction (NICOM 3) follows the highly successful NICOM 1 (Paisley, UK 2003) and NICOM 2 (Bilbao, Spain 2005) Symposia. The NICOM3 symposium was held in Prague, Czech Republic from May 31 to June 2, 2009 under the auspices of the Czech Technical University in Prague. It was a cross-disciplinary event, bringing together R&D experts and users from different fields all with interest in nanotechnology and construction. The conference was aimed at: Understanding of internal structures of existing construction materials at nano-scale. Modification at nano-scale of existing construction materials. Production and properties of nanoparticulate materials, nanotubes and novel polymers. Modeling and simulation of nanostructures. Instrumentation, techniques and metrology at nano-scale. Health and safety issues and environmental impacts related to nanotechnology during research, manufacture and product use. Review of current legislation. Societal and commercial impacts of nanotechnology in construction, their predictions and analysis.

Handbook of Less-Common Nanostructures - Boris I. Kharisov 2012-03-19 As nanotechnology has developed over the last two decades, some nanostructures, such as nanotubes, nanowires, and nanoparticles, have become very popular. However, recent research has led to the discovery of other, less-common nanoforms, which often serve as building blocks for more complex structures. In an effort to organize the field, the Handbook of Less-Common Nanostructures presents an informal classification based mainly on the less-common nanostructures. A small nanotechnological encyclopedia, this book describes a range of little-known nanostructures. Offers a unifying vision of the synthesis of nanostructures and the generalization of rare nanoforms. Includes a CD-ROM with color versions of more than 100 nanostructures. Explores the fabrication of rare nanostructures, including modern physical, chemical, and biological synthesis techniques. The Handbook of Less-
Common Nanostructures discusses a classification system not directly related to the dimensionality and chemical composition of nanostructure-forming compounds or composite. Instead, it is based mainly on the less-common nanostructures. Possessing unusual shapes and high surface areas, these structures are potentially very useful for catalytic, medical, electronic, and many other applications.

Nanotechnology and Oncology-Institute of Medicine 2011-06-08 One way scientists are working to overcome challenges in cancer treatment and improve cancer care is through nanotechnology. Nanotechnology, engineered materials that make use of the unique physical properties, presents a new array of medical prospects that will revolutionize cancer prevention, diagnosis, and treatment practices. Giving new hope to patients, practitioners, and researchers alike, nanotechnology has the potential to translate recent discoveries in cancer biology into clinical advances in oncology. While public investments in nanotechnology for cancer continue to increase, medical products based on nanotechnology are already on the market. The National Cancer Policy forum held a workshop July 12-13, 2010, to explore challenges in the use of nanotechnology in oncology. Nanotechnology and Oncology evaluates the ongoing discussion on the role of nanotechnology in cancer as it relates to risk management, treatment, and regulatory policy. Assessments on nanomedicine and the physical properties of nanomaterials were presented during the workshop, along with an appraisal of the current status of research and development efforts.

Nanotechnology for Biology and Medicine-Gabriel A. Silva 2011-10-22 This text book will bring together a mix of both internationally known and established senior scientists along side up and coming (but already accomplished) junior scientists that have varying expertise in fundamental and applied nanotechnology to biology and medicine.

An Introduction to Nanoscience and Nanotechnology-Alain Nouailhat 2010-01-05 This book recalls the basics required for an understanding of the nanoworld (quantum physics, molecular biology, micro and nanoelectronics) and gives examples of applications in various fields: materials, energy, devices, data management and life sciences. It is clearly shown how the nanoworld is at the crossing point of knowledge and innovation. Written by an expert who spent a large part of his professional life in the field, the title also gives a general insight into the evolution of nanosciences and nanotechnologies. The reader is thus provided with an introduction to this complex area with different "tracks" for further personal comprehension and reflection. This guided and illustrated tour also reveals the importance of the nanoworld in everyday life.

Nanoparticles: Building Blocks For Nanotechnology

Thank you for reading Nanoparticles: Building Blocks for Nanotechnology. As you may know, people have search numerous times for their favorite readings like this Nanoparticles: Building Blocks for Nanotechnology, but end up in infectious downloads. Rather than reading a good book with a cup of tea in the afternoon, instead they are facing with some infectious virus inside their laptop.

Nanoparticles: Building Blocks for Nanotechnology is available in our digital library an online access to it is set as public so you can download it instantly. Our digital library spans in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Kindly say, the Nanoparticles: Building Blocks for Nanotechnology is universally compatible with any devices to read

Related with Nanoparticles: Building Blocks For Nanotechnology: 2810237-file